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We analyze the phenomenon of low-frequency signal enhancement in a bistable system excited by a sum of
low-frequency and high-frequency harmonic signals. A mechanism alternate to chaotic resonance is discussed.
It is shown that a high-frequency signal may generate interwell transitions of subharmonic frequency. If the
frequency of the slow signal is equal or close to a subharmonic frequency of the fast signal, then the improve-
ment of the low-frequency constituent in the output spectrum is due to sustained subharmonic resonance.
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I. INTRODUCTION

In this Rapid Communication we discuss a mechanism of
low-frequency signal enhancement different from so-called
noise-free stochastic resonance. Stochastic resonance is a
phenomenon occurring in a system driven by a combination
of periodic signals and random noise, in which the periodic
component of the output signal becomes enhanced for an
optimal nonzero input noise intensity [ 1]. Noise-free stochas-
tic resonance, also termed chaotic resonance, is produced via
extrinsic [2] or intrinsic [3] chaos without random forcing
[2-4]. The chaotic dynamics can be tuned, by varying the
control parameter, to achieve the maximum of the periodic
constituent in the output spectrum. In both cases, the periodic
signal alone is assumed weak enough to escape from the
domain of attraction of the stable point or orbit. An addi-
tional random or chaotic excitation helps in surpassing the
threshold and induces hopping between the different stable
states. A relative signal enhancement becomes visible in the
hopping dynamics.

The passages between the stable states in a planar bistable
system are associated with the successive exits and entries
through the unperturbed separatrix [Fig. 1(a)]. The periodi-
cally driven bistable system demonstrates chaotic and non-
chaotic transportation through the separatrix [3]. Chaotic
transportation occurs if the system approaches the separatrix
with insufficient energy and the Melnikov condition [5]
holds. If the trajectory “runs” through the separatrix with a
relatively high velocity, escape through the separatrix is non-
chaotic.

We consider the equation of motion of the form

X+efi+U'(x)=¢eosin Qr+ eysin wt, (1)

where the small parameter 0 <& <<1 characterizes weak non-
conservative terms. The potential U(x) is a continuous and
twice continuously differentiable even function having maxi-
mum U(0)=0 at x=0 and two symmetric minima U(c)=U(
—c)<0 at x==%c [Fig. 1(b)].

We take

U'(x) == Kx + f(x),

where f(0)=0, f(-x)=—f(x), |[f(x)]—> as |x|—o, and
|f(x)|/|x| — 0 as |x| —0. Then, we assume )/ w> 1. Thus the
first and second terms on the right-hand side of Eq. (1) can
be interpreted as the fast and slow signals, respectively.
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Chaotic resonance generated by harmonic excitation has
been studied earlier [4]. This Rapid Communication dis-
cusses a mechanism of signal enhancement in a bistable sys-
tem, alternate to chaotic resonance. We show that a fast sig-
nal of frequency () may generate periodic interwell
transitions of subharmonic frequency (}/s with a large mag-
nitude, which is close to the distance between the stable
states. This process is interpreted as subharmonic resonance.
If the frequency of the slow signal w=()/s, then the en-
hancement of the low-frequency signal can be considered as
sustained subharmonic resonance.
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FIG. 1. The unperturbed separatrix (a) and potential (b) of the
unperturbed system.
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The system with the low-frequency input signal
X+efi+U'(x)=¢gysin wt (2)

exhibits small quasilinear oscillations near the stable point
with the amplitude
ey

AV_ [()\2_w2)2+(813w)2]1/2’ (3)
where \=[U"(c)]"? is the frequency of free oscillations
in the conservative subsystem (eg=0). If w<N\, then
A,~eyl \2. An additional input signal of frequency Q=ws
may generate subharmonic oscillations of frequency w with a
large magnitude of oscillations [6,7].

Different approximations of the subharmonic solution
lead to similar results [6,7]. In this Rapid Communication we
use the simple techniques of [7] based on a combination of
the Galerkin [8] and harmonic balance methods. In Sec. I,
we recall the basic equations. Considering the Duffing sys-
tem as a typical bistable system, we calculate the amplitude
of subharmonic oscillations and prove that subharmonic
resonance is associated with transitions between the stable
states. The results of the numerical simulation (Sec. IIT) dem-
onstrate the improvement of the low-frequency signal in the
presence of the fast signal.

II. SUBHARMONIC OSCILLATIONS IN SYSTEM (1)
A. Basic equations

Let T,=2s/() be the period of subharmonic oscillations.
Since the nonconservative forces (dissipation and external
forcing) in system (1) are small, the subharmonic solution is
assumed close to the T -periodic oscillations of the conser-
vative subsystem

i—kx+ f(x)=0. 4)

This assumption implicitly presupposes the resonance mode
of subharmonic oscillations in system (1). Let x,(¢) be a
known T-periodic solution of Eq. (4). Then the approximate
T,-periodic solution of Eq. (1) is sought as [7]

x(ts(tD)ZXO(t+qD)+8+ o, (5)

where the parameter ¢ determines the phase shift between
the free and forced oscillations and small correction terms of
order & are omitted. Omitting the detailed derivation (see,
e.g., [7]), we note that the equation for the phase ¢ is re-
duced to the equation of the balance of work: the work done
by the nonconservative forces along the locked periodic orbit
is equal to zero. This equality can be written as

T
P(p) = J Lo sin Qr + y sin(Qu/s) — Bxy(r+ @) 1xo(t + o)dr
0

=0. (6)

The function P(¢p) expresses the work performed by the
nonconservative forces over the period Ty, if P(¢)<0,
the loss of energy due to dissipation exceeds the energy
acquired due to external forcing over the period 7, and

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 75, 035202(R) (2007)

x(T,, ) <x(0,¢); on the contrary, if P(¢)>0, then
x(T,, ) >x(0, ¢); finally, P(¢)=0 on the periodic solution.
We now find the generating solution x,(7). Formally, a
T,-periodic solution may be presented as an infinite Fourier
series. The approximate subharmonic solution is sought as
the sum of the principal harmonic of frequency () and the
substantial subharmonic of frequency w=0/s [6,7]:

xo(f) = A sin(Qt/s) + B sin Qt,B < A. (7)

As the nonlinear term in Eq. (1) is odd, the principal
harmonic produces only odd subharmonics—that is,
s=2k+1,k=1,s=3, where k and s are integers [6]. The
amplitudes A and B are found approximately by the har-
monic balance method [7]. To this aim, we substitute expres-
sion (6) into the function f(x) and construct the Fourier series
of the function f(A sin(Q)¢/s)+B sin Q¢). Considering only
the substantial terms, we obtain a truncated Fourier series in
the form

(A sin(Qz/s) + B sin Qr) = q,(A,B)sin Q¢
+ q,(A,B)sin(Qis)
+ (insubstantial harmonics),
()

where the Fourier coefficients ¢,, r=1, s, are calculated as

2

q,(A,B) = 1 f(A sin ¢+ B sin(s@))sin(r¢p)de¢p. (9)
m™Jo

Substituting expansions (7) and (8) into Eq. (4), we obtain
the equation

[¢,(A,B) — (k* + O?)B]sin Qt
+{q,(A,B) = [k* = (Q/s)*]A}sin(Qt/s) =0,  (10)

which must be valid at each moment ¢. This implies that the
coefficients before sin {)r and sin({)¢/s) are equal to zero—
that is,

q,(A,B) - (K +Q*)B=0,

q,(A,B) = [k* + (Q/s)?]A =0. (11)
Assuming w=/s<<k and considering the condition

B<A, we obtain from Egs. (11)
q(A) —k*A =0,

q,(A,B) - (K> + Q)B =0. (12)

This implies that the leading-order approximation of the
subharmonic amplitude A is independent of the amplitude B
and the excitation frequency ().

Finally, we obtain the equation for the phase ¢. Inserting
solution (7) into integrand (6) and considering w=/s, we
find

P(¢) =— BO[A% + (sB)*]/s + soB sin(Qe) + YA sin(we) = 0.
(13)

Despite its simplicity, the harmonic balance approximation
of the precise periodic solution is highly accurate provided
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FIG. 2. (Color online) Small oscillations in system (18).

the function f(x) is smooth enough and the nonconservative
forces parametrized by the parameter &€ are small. Rigorous
estimates can be found in [9].

B. Subharmonic transitions in the Duffing equation

The harmonic balance coefficients are integral character-
istics slightly depending on the shape of the function f. This
allows investigation of subharmonic oscillations in the Duf-
fing system as a typical phenomenon. Using a proper scaling,
we obtain the Duffing potential in the form

U(x) =—x*12 + xY4. (14)
The equations of motion are written as
w=0/s.
(15)

Fi+eBi—x+x>=g0sin Ot +sysin o,

From Eqgs. (9) and (12) we find

g(A)=3A%4, —K2+3A%4=0, A=2/\3. (16)

Obviously A>A,. We now show that subharmonic oscilla-
tions correspond to periodic transitions between the stable
states. The stable states =c of the unperturbed system with
potential (14) are found from the equation U’(x)=0, which
gives c=1. The points =C of the potential function intersec-
tion with the x axis (Fig. 1) are defined by the condition
U(x)=0—that is, C=v2. It follows from Eqs. (16) that
A=2/43 and ¢ <A< C. This implies that the magnitude 2A
of subharmonic oscillations is more than the distance be-
tween two stable points +c¢ but less than the distance between
two external points +C. Thus the trajectory of subharmonic
oscillations corresponds to the transitions between two stable
positions but it does not escape to the domain of large oscil-
lations outside the separatrix.

Since weak periodic forcing generates subharmonic oscil-
lations of large magnitude, subharmonic transitions can be
associated with subharmonic resonance. It follows from Eq.
(13) that subharmonic resonance may exist even in the ab-
sence of a slow signal (y=0). A simple example demon-
strates that the slow signal sustains subharmonic transitions.
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FIG. 3. (Color online) Interwell transitions in system (18).

Let sin(wg) >0, 0<we<. It is easy to see that the addi-
tional positive term YA sin(we¢) in Eq. (13) increases an ad-
missible level of dissipation, allowing subharmonic transi-
tions. Subharmonic oscillations in the presence of a slow
signal can thus be interpreted as sustained subharmonic reso-
nance.

Subharmonic resonance is visible if the period of subhar-
monic oscillations is comparable with typical time constants
of the system. The higher subharmonic resonances exist and
may be stable but the domains of stability are negligibly
small [6].

III. NUMERICAL SIMULATION

The simulation results of [4] confirmed the presence of
chaotic transportation and chaotic resonance in system (15)
with  bimodal excitation with frequencies Q=1.1,
0=0.0632, and s=Q/w=17. The frequency Q=1.1 was
chosen corresponding to the maximum of the Melnikov
shape factor [4] and thus yielding the most intensive chaotic
transportation. The task is to demonstrate the existence of
nonchaotic subharmonic transitions in system (15).

The pronounced subharmonic resonance in a system with
cubic nonlinearity corresponds to s=3; the domains of exis-
tence and stability of higher subharmonic resonances are
negligibly small and embedded in the “chaotic sea” [5,6].
This makes investigation of the subharmonic resonance of
frequency (1/17 meaningless. We simulate the dynamics of
system (15) with the parameters of the same range as in
[4]—namely, ¢8=0.316, Q=1.1, £0=0.3, and ey=0.1—but
we take a slow signal of frequency w={()/3. Computation
has been performed with MATLAB software using 32 signifi-
cant digits.

The motion of the system,

1.1
i+eBi-x+x°=0.1 sin<?t>, (17)

is close to small linear oscillations of frequency
w=1.1/3=0.367 near the stable point x=1,v=0 (Fig. 2).
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FIG. 4. (Color online) The output spectra of systems (17) (a)
and (18) (b) with peaks of w=0.367.

Adding an additional fast signal of frequency Q=1.1, we
obtain the system with bimodal excitation:

1.1
i+eBi—x+x>=03sin(1.17) + 0.1 sin<?t>. (18)

Figure 3 demonstrates the appearance of the interwell
transitions in system (18). The averaged magnitude of
oscillations  slightly exceeds the theoretical value
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A=2/ \5% 1.155, but in a qualitative sense, the transitions
dynamics is consistent with the theoretical description. The
trajectory of subharmonic oscillations overlaps the stable po-
sitions but it does not escape to the outer domain. The en-
hancement of the low-frequency component in the output
spectrum is shown in Fig. 4.

IV. CONCLUSION

We have demonstrated that the phenomenon of low-
frequency signal enhancement in a bistable oscillator with
bimodal periodic excitation is not directly associated with
chaotic resonance. The high-frequency component of the pe-
riodic excitation may generate periodic interwell transitions
of subharmonic frequency with the magnitude exceeding the
distance between the stable states. This process is interpreted
as subharmonic resonance. Assuming the frequency of a
slow signal equal or close to the transitions frequency, we
have treated the slow signal enhancement as a demonstration
of sustained subharmonic resonance.
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